Course Specific Outcome

[Department of Chemistry: Organic Section]

For Chemistry Honours Students

Course	Course prerequisite	Expected outcome
CORE T1: ORGANIC CHEMISTRY-I	Elementary knowledge of bonding in organic molecules	 Development of insight into Molecular structure Physical properties Basic stereochemical aspects.
CORE P1: ORGANIC CHEMISTRY-I LAB	Acquaintance with common apparatus used in the laboratory	 Acquisition of experimental knowledge in Identification of organic compounds Separation of mixture
CORE T4: ORGANIC CHEMISTRY-II	Elementary knowledge of bonding and reactivity	 Familiarity with Static stereochemistry Kinetics, energetics Mechanistic and stereochemical principles of substitution and elimination reactions
CORE P4: ORGANIC CHEMISTRY-II LAB	Acquaintance with common apparatus used in the laboratory	 Acquisition of knowledge in Preparation of organic compounds Purification of the prepared compound Characterization of the synthesised compound Determination of yield of the product
CORE T7: ORGANIC CHEMISTRY-III	Elementary knowledge of reactivity patterns	 Introduction to Functional group and reagent chemistry in terms of mechanistic and stereochemical aspects
CORE P7: ORGANIC CHEMISTRY-III LAB	Acquaintance with common apparatus used in the laboratory	 Familiarity with Identification of organic compound through systematic analysis

CORE T10:	Basic knowledge in	Familiarity with
ORGANIC CHEMISTRY-IV CORE P10: ORGANIC CHEMISTRY-IV LAB	reagents, reaction types and electromagnetic radiation Basic knowledge of handling burette and pipette	 some organic name reactions synthetic strategy structure elucidation in terms of spectroscopic techniques Understanding of the Principles and experimental methods of the quantitative estimation of an organic compound
CORE T12: ORGANIC CHEMISTRY-V	Elementary idea about writing reaction mechanism, drawing of molecular orbitals and basic stereochemical principles	 Understanding of synthesis and reactivity of Polynuclear hydrocarbons Heterocyclics Carbohydrates Biomolecules Familiarity with static and dynamic stereochemistry of six membered rings Role of orbital symmetry in organic reactions
CORE P12: ORGANIC CHEMISTRY-V LAB	Basic knowledge of chromatography, chemical shift and coupling constants	 Familiarity with Chromatographic separation of a mixture Interpretation of IR and NMR spectra
DSE T4: GREEN CHEMISTRY	Elementary idea about the hazardous aspects of chemical processes and reactions	 Introduction to principle and applications of sustainable, environmentally benign chemistry
DSE P4: GREEN CHEMISTRY LAB	Elementary idea about environmental hazards	 Introduction to Methodologies directed towards minimisation of chemical hazards

For Chemistry General Students

Course	Course prerequisite	Expected outcome	
CEMGCOR01T: Section B - ORGANIC CHEMISTRY I	Elementary knowledge of bonding in organic molecules	 Development of insight into Molecular structure Physical properties of organic molecules Introduction to Basic stereochemistry Mechanistic and stereochemical aspects of substitution and elimination reactions Chemistry of aliphatic hydrocarbons 	
CEMGCOR01P: Section B - ORGANIC CHEMISTRY LAB	Acquaintance with common apparatus used in the laboratory	 Familiarity with Qualitative Analysis of Single Solid Organic Compound 	
CEMGCOR03T: Section B - ORGANIC CHEMISTRY II	Elementary knowledge of reactivity patterns	 Introduction to Functional group chemistry in terms of elementary mechanistic aspects 	
CEMGCOR03P: Section B - ORGANIC CHEMISTRY LAB	Acquaintance with common apparatus used in the laboratory	Acquisition of experimental knowledge inIdentification of solid and liquid organic compounds	

Course specific outcome: Chemistry Hons (Physical Chemistry)

		1
Course	Course prerequisite	Expected outcome
CEMACOR02T:	Elementary idea of	Knowledge about the
PHYSICALCHEMISTRY-I	Chemical Thermodynamics	energetics of different
	Kinetic Theory and	physico chemical processes
	Gaseous state	Equation of state,
	Chemical kinetics	distribution function,
		Equipartion of energy
		Extent of reaction: Kinetic
		study to reveal mechanistic
		pathway
		puttinuy
	Transport processes for	Knowledge about the
CEMACOR05T: PHYSICAL	fluids along with	velocity of molecules /ions in
CHEMISTRY-II	conductometric study.	different environment.
	Application of	Knowledge about the
	Thermodynamic study.	chemical potential.
	Foundation of Quantum	Wave and particle nature of
	Mechanics	matter, Planck Theory
CEMACOR08T: PHYSICAL	Application of	Knowledge about colligative
CHEMISTRY-III	Thermodynamics – II	properties, Phase Rule,
	Electrical Properties of	Binary Solutions, Ionic
	molecules	equilibria, Electrochemical
	Quantum Chemistry	cell, Angular momentum
		Oualitative treatment of
		hydrogen atom and
		hydrogen-like ions:
CEMADSE01T:	Properties of solids,Laws of	Understanding of Geometry
ADVANCED PHYSICAL	Crystallography:	of crystals, Statistical
CHEMISTRY	Statistical	distribution of molecules
	Thermodynamics.	Polymeric substance
	Polymers	
CEMACOR14T: PHYSICAL	Molecular Spectroscopy	Understanding of spectral
CHEMISTRY- IV	Photochemistry	study related to rotational &
	Surface phenomenon	vibrational motion of
	-	molecules .Absorption of
		light and related
		phenomenon, surface
		chemistry.